翻訳と辞書
Words near each other
・ Dinhata (Vidhan Sabha constituency)
・ Dinhata College
・ Dinhata High School
・ Dinhata I (community development block)
・ Dinhata II (community development block)
・ Dinhata subdivision
・ Dinheirosaurus
・ Dinhing Dapita Sadya
・ Dinho Chingunji
・ Dini
・ Dini Beyk
・ Dini Cabinet
・ Dini continuity
・ Dini criterion
・ Dini Daniel
Dini derivative
・ Dini Dimakos
・ Dini Petty
・ Dini test
・ Dini Ya Msambwa
・ Dini's Lucky Club
・ Dini's surface
・ Dini's theorem
・ DinI-like protein family
・ Dinia
・ Dinia (moth)
・ Dinia eagrus
・ Dinia mena
・ Dinia subapicalis
・ Dinic


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dini derivative : ウィキペディア英語版
Dini derivative

In mathematics and, specifically, real analysis, the Dini derivatives (or Dini derivates) are a class of generalizations of the derivative. They were introduced by Ulisse Dini.
The upper Dini derivative, which is also called an upper right-hand derivative, of a continuous function
:f: \rightarrow ,
is denoted by f'_+,\, and defined by
:f'_+(t) \triangleq \limsup_
where \limsup is the supremum limit and the limit is a one-sided limit. The lower Dini derivative, f'_-,\,, is defined by
:f'_-(t) \triangleq \liminf_
where \liminf is the infimum limit.
If f is defined on a vector space, then the upper Dini derivative at t in the direction d is defined by
:f'_+ (t,d) \triangleq \limsup_.
If f is locally Lipschitz, then f'_+\, is finite. If f is differentiable at t, then the Dini derivative at t is the usual derivative at t.
==Remarks==

* Sometimes the notation D^+ f(t)\, is used instead of f'_+(t),\, and D_+f(t)\, is used instead of f'_-(t).\,
* Also,
:D^-f(t) \triangleq \limsup_
and
:D_-f(t) \triangleq \liminf_.
* So when using the D notation of the Dini derivatives, the plus or minus sign indicates the left- or right-hand limit, and the placement of the sign indicates the infimum or supremum limit.
* On the extended reals, each of the Dini derivatives always exist; however, they may take on the values + \infty or - \infty at times (i.e., the Dini derivatives always exist in the extended sense).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dini derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.